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Abstract Within the enormous range of modelling situations involving time integration, we identify
a number of special problem types that make great demands on the technigues of numerical analysis.
These include stiff problems, retarded problems and problems involving algebraic constraints, We
will review traditional numerical methods for these problems and attempt to identify the source of
any special shorteomings that various methods might have for each class of problem. The discussion
will then centre on singly-implicit methods and the potential that they have for dealing with these
difficulties. The idea of a “General Linear Method” will be introduced as a means of including a very
wide class of methods under a unified formulation. Finally, a new class of general linear methods
will he discussed: this seems to have the potential to contribute in a useful way to the building up

of a coliection of tools for the solution of many difficult simulation problems.

1 INTRODUCTION

The modelling of continuous problems typi-
cally involves the integration of differential equa-
tions. This paper is concerned with the nummerical
approximation to the solution of of such equations
or equation systems in the event that there is no
closed-form or “analytic” solution. Since many
problems involve some additional complication,
such as the presence of stifiness, retarded terms

valued function with components yi, ya, ..., YN
each of which has a corresponding f component
which might depend on each of the y components.

In this case, (1) is really a shorthand for an
eguation system of the form

- fl(:nuylqua---ayN)a
rr fa(z, v, ye, .oy )

i

{3)

or-algebraic constraints; we witl include-these o
the discussion as well.

The paper is organised along the lines of a
brief survey of the problems themselves (Section
2), a survey of existing numerical methods (Sec-
tion 3) and some suggestions for improving the

- numerical - performance of numerical- integrators - -

by the use of some new approaches (Section 4}.
In the meantime we lay down some basic termi-
nology.
We will always denote “time” by the symbol
z and we consider the behaviour of a time de-
pendent function y(z). We will assume that the
behaviour of y is governed by a differential equa-
tion
dy

i flz,u). (1)

Since (1} can have many solutions, it is neces-
sary to specify some additional data to make the
solution unigue and to make numerical simula-
tions feasible. We will deal here only with cases
in which this is done using an “initial value” in
which at some specified initial fime xp, ¥ Is as-
signed a specific value yp. That is, we will assume
that

{2)

The equation (1) is more general than it might
seem at first sight because y could be a vector

y(zo) = yo.

_c:’,:r_. = fN(IvylmayZa-“ayN}‘

With such generality as this, it is possible to in-
clude within the formulation high order differen-
tial equations. [f the generality is apparently less-
ened by removing the dependence of each of fi,
fay ooy fvoom ;. so.that the equation. is assumed.
to be “autonomous”, then this makes no essential
difference because an additional differential equa-
tion whose solution is exactly 2 can be added to
the system. Thus we can counsider instead of (3)
the simpler system

%1‘ = filyn, vze . UN )
Eyri = f?(y}.wy21"':yN)1 {4)
% = f‘N{yE'y%"'?yN)-

In the use of differential equation software, (3}
is preferred, because of its convenience, whereas
for some mathematical analyses, (4) is preferred
because of its greater simplicity with no less gen-
erality.

2 TIME DEPENDENT PROBLEMS

In this section we will explore some special
problem classes which either place abnormal dif-
ficulties on a numerical process or which extend
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the problem class to such an extent that com-
pletely new methods become necessary.

2.1 Btiff differential equations

Many differential equations, and equation sys-
tems, are very strongly stable in the sense that
a small permutation from the solution will be
guickly attenuated. For example, the initial value
problem

iy

= — 1000y + 9997,
dx

w0 =1 (5
has solution y = 7. If the initial value is chang-
ed from 1.0 to 1.001 then by the time 7 moves
from 0.0 to 0.01, the solution will have changed
from its original value of e=%% = 0.0900458337
to 0.8900498791. Hence the perturbation of 0.001
has, after this small time interval, been decreased
to 4.54 x 1075, If = increases further to 0.1, the
effect of the perturbation will have decreased to
less than 107*%. This same problem, which is
very stable as concerns the exact solution, is ac-
tually very unstable when a standard numerical
method is attempted for its numerical approxi-
mation. To see how this happens, consider what
happens when numerical approximations are cal-
culated using the simple method of Fuler. For
this method, the solution approximation in each
time siep is assumed to change linearly with its

solution at some previous time, or even on several
previous times. The so-called logistic equation

d

2 — Ry(a)(L — ylx)),
is used in the study of populations that srow ex-
ponentially with rate factor R for small popula-
tion sizes, but for which the exponential growth
factor decreases as the population increases to-
wards a maximum possible size, scaled to 1 in
this formulation. An alternative delay version of
the same problem assumes that the growth rate
is related not to the current population size, but
to the population at some previous time. For
example, taking the unit of delay as 1 gives the
aguation

Y Rutz)(1 -yl - 1)),

There are special difficulties associated with this
sort of problem related to the fact that evaiuation
of the delay term involves interpolation within
steps previously covered. Discontinuous behav-
four is also characteristic of the sclutions of this
type of probiem and this also creates numerical
difficulties.
equation

2.3 Differential-algebraic

systems

Sometimes additional algebraic constraints

slope-evaluated-at-the beginming of the step:-For

example, assume that steps of size A = 0.01 are
used in approximating the solution. The exact
solution at = 1.0 is 0.3679. When the simpler
problem dy/dx = —y, with the same solution, is
solved by the Euler methad, the computed answer

i5.0.3660 which is correct te-about-0.5%. How-

ever, when the same computation is attempted
for (5) no useful result is found. For example
after 10 steps, when x has moved to 0.1, the so-
lution has now increased out of hand to nearly 7
million. By the time 2 has increased to 1.0 the
computed ¥ has increased to more than 5 x 1092,
This instability results from no perturbation at
all, except the errors that arise naturally in the
numerical approximation.

This example of a “stiff” problem is simple
but typical of stiff behaviour in general. Prob-
lems with this particular difficult feature arise in
the modelling many physical, chemical and engi-
neering problems.

2.2 Delay differential equation systems

Modelling using differential alone is not ade-
quate in the description of many economic and
biological problems because the rate of change of
the solution will depend on the state of the sys-
tem, not only at the current time but also on the

have-to-be added-toa-differaitial squation svs
tom to render the system a faithful model of the
scientific problem being investigated. This can
be lnterpreted, in many physical situations, as
restraining the solution to a specific subspace of
the IV dimensional vector space in which the salw-

tion of a differential equation les: For many other

problems, the algebralc constraints can be inter-
preted as the imposition of conservation laws.
Many differential-algebraic equations can be
solved using a simple extension of methods appro-
priate for differential equations. However, there
are also problems for which compeletely new nu-
merical methods are necessary. An example of
this is in the formulation of the motion of & sim-
ple pendulum using X, Y to represent the posi-
tion coordinates, U and V to represent the corre-
sponding velocity coordinates and T for the ten-
sion in the “light string”. Even though we do not
have a differential equation for T', we know that
its value is always exactly the required value to
force the length of the string, here denoted by
L, to remain constant. The acceleration due to
gravity will be dencted, as usual, by ¢ and the
mass of the moving bob by m. The complete set
of differential and algebraic equations to model
the problem is

dX

dx

= U

1
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dy

I

dz '

@wo_ TX

dr L’

v _ v

dax Lm
X' 4v? = %

This problem is typical of mechanical problems
and is sald to have “index 3". The index mea-
sures how far removed the problem is from being
just a differential equation and at the same time
measures the inherent computational difficulties
there are associated with its solution. Index 3
is on the limits of what is possible to be solved
numerically in any satisfactory manner.

3 TRADITIONAL METHODS

In a computational situation, being presented
with an initial value problem is equivalent to be-
ing presented with a procedure or subroutine to
compute values of the vector-valued function f
and, at the same time, sufficient inital data to
specify the solution. By using the function f re-
peatedly, the aim is to advance what is known
about the solution forward in time. The tradi-
tional appreach is to carry this out in a step-
by-stp manner. That is, once the initial infor-
mation has been organised into a suitable form,

step s carried out and no special provision is re-
quired if for some reason the stepsize h is altered
between one step and the next. Unlike the Eu-
ler method, f can be evaluated more than once
in each step and the approximations at which
these derivtive values are computed are known
as “stage-values”. In an s-stage method, s of
these stage values, Y7, Vs, ..., Y, are evaluated in
each step. In a classical “explicit” form of the
method, each stage depends on the previously
computed stage derivatives, whichk we will denote
by Fi, Fa, ..., Fs. Suppose that the coefficient
of kF; in the formula for ¥; is a;; and suppose
also that ¥} is intended to be an approximation
to y(zp-1 + he;). Then it is necessary for con-
sistency between possible interpretations of the
method that ¢; = 3.7, ai;. Because of the ex-
plicit nature of the method, a;; = 0 unless i > 37,
and a consequence of this is that ey = 0, Write
b; for the coefficient of hF} in the approximation
to Y, output at the end of the step. Put all this
together and we find the following formulae for
carrying out the work in a single step

}{i - yn—l‘f"hz;:l aiij,
Fi = flon g +he, Y3),
Un = Wn-—-1 + h z::;{ biFi.

It is customary to write the defining coeffients for
a particular method in a tableau as follows

t=1,2,...,8s,

the solution.is advanced one step forward.and the
re-organised initial information is updated to ap-
ply one step later. The simple method of Euler,
which we have already discussed, can be written
in the form

Yn = Yot T Af(Cpt, Ynr )y

where £ is the steplength equal to z,, ~ z,.1 and
Yn 1s the computed approximation to y{z,), with
o the given initial value. Since each of yo, 11, ...
is a vector, we have already reached a notational
crisis by trying to write the components of the
sequence of approximations separately. We will
do this just once, for the Euler method, and from
then on confine ourselves to the more compact
vector notafion. Component ¢ of the approxima-
tion to y{z,) will be denoted by y,;. This means
that (6) can be written in full as

Yni = Yn—-1,i + hfi(:ﬂn—l:yn—l,le . -1971—-1.1\')3 (7«)
i=1,2,... M.

2.1 Runge-Kuita methods

Runge-Kutta methods are “one-step methods”
in the sense that, as for the Euler method, the for-

mula for y, invelves y,_1, but none of the earlier

approximations yn 2, Yn-3, ... L0is means that
no preparation is required before the very first

(6)

€1 i 12 Gig
Ca | a1 @az A2
Cs | st (59 e Qgg

|.b1 IR 2 NI /

or in the explicit case, when many of the coeffi-
cients are zero,

Y]
Ca | Qo1
C3 | a3l Oaz
Cy | Qg gy -+ g g}
bl b2 bs -1 bs

The most famous example of these methods was
discovered by Kutta and is often referred to as the
Runge-Kutta method. In this case the tableau is

[l ] L =1 [ ]

Sl D SOl
il el
b Pt

urd B

In contrast to these explicit methods, methods
also exist in which the rule that certain entries
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in the A matrix must be zerc, is not enforced.
These implicit methods can, in some cases, be
used for the solution of stiff problems, unlike ex-
plicit methoeds where they never works efficiently.
An example of one of these implicit methods is
given by the tableau

Lo ¥3 1 1 yE
2 g i 4 [;
1.3 1,43 1
2.8 4, i 4
I p
2 2

3.2  Linear multistep methods

Unlike Runge-Kutta methods which depend
on repeated calculation of f to obtain good ac-
curacy, linear multistep methods evaluate f only
once in each step. However, unlike Runge-Kutta
methods, the computed golution in each step may
depend on values computed in several previous
steps. Denote by k the greatest distance back in
the past on which each approximation depends.
That is, ¥, may depend on y,,_s but on no earlier
value, Since we can compute f(x;, vy} as soon as
¥: has been evaluated, the general form of one of
these “linear k-step methods” is

k &
Yn — z Qiln— -+ h Z .’ﬁif(mn,ﬁisynwi)-
i=1 =0

Note that methods in this class are explicit when

3.3  Taylor series methods

For many differential equations, it is possi-
ble to derive formulae also for the second and
higher derivatives and thus it is possible to com-
pute several terms in the Taylor series approxi-
mation for ylz, ) in terms of ylx, 1), v'(z._1),
y'{zp_1), . ... Even when formulae for the higher
derivatives cannot be found by inspection, com-
putational methods exist for generating computer
code for them,

3.4 Critigue of existing methods

Although the methods that have been referred
to have enjoyed great success for a variety of prob-
lems, there are reasons to wish for mere. For
the solution of non-stiff problems that impose no
special difficulties, Runge-Kutta methods are re-
garded as being more expensive fo use although
they enjoy the advantages of good stability and
convenience of use. There is no built-in inter-
pelation scheme or asymptotically correct local
error estimator and this makes it difficult to de-
sign flexible, variable step algorithms based on
these methods, On the other hand linear multi-
step methods have interpolation and error esti-
mation readily available but variable step imple-
mentations are complicated by the need to modify
the way the data is used when stepsizes actually
change, Taylor series methods are difficult to im-

gz 0 The alveraative phelt st iods, 1
which Fy #£ 0, are capable of greater accuracy but
suffer the same disadvantages as implicit Runge-
Kutta methods, of requiring special technigues
to actually evaluate solution values. Examples
of each type are easy to find and they are of
ten combined - for practical implementation into
“predictor-corrector” pairs. For convenience we
will write f; to mean f{z;,y;) Such a pair, known
as order 3 Adams-Bashforth and Adams-Moulton
methods are given by the formulae

Un =

3 2 1
Yn = Yne +hi|— n SIn—1 7 T% v-nf .
Y Yn-1 l(lzf tgfi -5t 2)
The explicit (predictor) member of the pair can

be used to obtain an approximation good enough
to evaluate f, for use in the implicit {corrector)
member of the pair,

By contrast to these methods which work well
for non-stiff problems, there are also methods that
are recomimended for stiff problems. The most
important of these aze known as “backward dif-
ference methods” and the 3-step example is

18 9 2 nS
Yn—1 =™ 33 ¥n-2 w3 [amamalt P
Yn-1 11”’ 2% Trln--3 1

Yn = 7° 11 1

23 4 5
Y1+ R (ﬁfﬂ—l - gfn—z + Efn.—3> ;

plement for general purpose use, and although
they can be spectacularly successful, they have
never enjoyed the popularity of either Runge-Kut-
ta or linear multistep methods.

Stiff problems are usually solved using back-
ward difference methods but stability difficulties
dai limit the accuracy that is achievable by these
methods. Two key indicators of the ability of a
method to solve stiff problems accurately and ef-
ficiently are (1) order of accuracy which measures
how rapidly accuracy improves when increasingly
severe stepsize Hmitations are imposed and (ii) A-
stability which determines the ability of method
to solve stable problems and produce stable nu-
merical results. It is known that A-stability is
impossible for orders greater than 2. The same
limitations do not apply to implicit Runge-Kutta
methods and it s actually possible to obtain A-
stable methods of any order. The trouble with
these methods is, however, that the computa-
tional cost rises rapidly with order. In recent
times, Hunge-Kutta methods have heen specif-
ically sought which, to some extent, aveid the
high costs asscciated with fully implicit meth-
ods. In section 4 we will expiore these specially
designed methods in some detail. The difficul-
ties encountered in this search for good methods
has also led to other considerations. Perhaps, it
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might be thought, it is possible to look beyond
the standard types of methods for a complstely
new approach. Fortunately, such a new approach
is possible and we will look for it within the wide
class of “general linear methods”, which Includes
Runge-Kutta methods and linear multistep meth-
ods as special cases.

4 SOME NEW APPROACHES

4.1 {(General linear methods

As a unifying scheme for representing a large
family of methods, we look at methods with
quantities passed between steps and with $ stages.
Such & method can be represented by a parti-
tioned (s 4 ) x (s +7) matrix

AU
1

Denote the quantities passed from the completion
of step number n to the following step by ygn],
yé"], e yﬁi] and the stage values by ¥1, 12, .. .,
Y, with Fy, Fa, ..., F, the corresponding stage
derivatives. These quantities are related by the
eqguations

Vimh 3oy aig By + 205 g wi U'E'R_i]

y?l]mh Zj’:l bUFJ -} Z;zl Uijygnwllr j:L Lo,

By choosing 7 = 1 we revert to the Runge-Kutta

H _‘j:l,...,S,

is still implicit, the stages can be evaluated se-
guentially. This means that rather than having
to solve a system of sN non-linear algebraic equa-
tions in each time step it is necessary to solve only
s systems each of N equations. This is a tremen-
dous saving for the large problems that occur in
practice. Unfortunately the methods found un-
der this restriction are limited in their usefulness
by low stage order and by an excessive number of
stages required for reasonably high orders. It will
be seen below that the same diagonally implicit
structure does not have these same limitations in
the context of general lnear methods.
Runge-Kutta

4.3 Singly-implicit

methods

To overcome the disadvantages of diagonalty-
implicit methods, without lesing all their advan-
tages, singly implicit methods have come under
consideration. These methods are fully implicit
but the coefficient matrix A has a one-point spec-
trum; that is, it has only a single eigenvalue.
By adding special transformations within the im-
plementation, the cost can be reduced, at least
for large problems, to essentially the same as for
diagonally-implicit methods. It is also possible
to obtain order and stage order each equal to
5. Unfortunately, additional difficulties are in-
troduced in this type of method. Most notably,

case and by choosing s = | we obtain meth-
ods that are similar to linear multistep meth-
ods. Our alm wili be to find methods that lie
between these extreme cases and have properties
that are, overall, superior to either of them. We
will write p for the order of the method and g
for the “stage order”.” To see what this means,
suppose that there exist v functions ¢1, @2, ...,
¢, such that the method accurately propagates a
vector of approximations formed from the exact
trajectory by applying these functions. If ¢{y(x))
is the vector of approximations formed in this way
then the criteria for order p and stage order g Is
that when yz[ﬂ—li is defined for 4 == 1,2,...,7 as
¢ (u(2o1)), then stage number i satisfies ¥; =
Y{zn; +he) + O(RTTY), for ¢ = 1,2,...,5 and
W = ply{zn )+ ORPTY) fori = 1,2,...,r. Ab-
stract though this definition might seem, it can
be turned into a practical means of identifying

ugeful methods as we shall see later.

Diagonally implicit Runge-Kutta
methods

4.2

A well established approach to the selection
of suitable Runge-Kutta methods for stiff prob-
lemns is to insist that the coefficient matrix A has
a lower triangular structure with constant val-
ues on the disgonal. Even though this method

the-cholee-of-abscissas -for-the-method-required
for A-stability forces some of them to lie outside
the interval over which a step is working, if s > 3.
Two approaches can be adopted te alleviate this
difficulty and they can be combined together for
a combined benefit. The first of these allows for
the addition of further diagonally-implicit stages
tagged onto the end of the main singly implicit
block. The second is to generalise the order re-
quirement to what is known as “effective order”.
This is similar to the meaning of order adopted
for general linear methods and does not resuit
in any deterioration of the computational perfor-
mance.

DIMSIM methods

As an attempt to identify promising general
linear methods, DIMSIM or “diagonally implicit
multistage integartion methods” were introduced.
The basic assumptions were that p = ¢= 7 = s,
that A has a diagonally implicit structure and
that V" has rank 1. Although this class contains
methods intended for parallel computation, we
shall not discuss these here and there remains
what ar called “type 1” and “type 2" methods,
intended for non-stiff and stiff problems respec-
tively, To simplify the stability analysis of these
methods, it is assumed that methods of these

4.4
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types possess a property known as RK stability,
which is simply the requirement that the stahility
matrix for the method has only a single non-zero
eigenvalue. Methods of this sort for the explicit
type 1 variety and the implicit type 2 variety up
to quite high orders but they hecome increasingly
difficult to actually find. So far methods up to or-
der 8§ are known, at least with numerically derived
coeflicients.

4.5 A new class of methods

It bas been discovered recently that “inherent
REK stability is possible”. That is, it is possible
t0 impose some mild restrictions on the structure
of the methods so that good stability, just as for
Runge-Kutta methods is assured. Furthermeore,
unlike DIMSIM methods, the coefficients in these
methods can be evaluated exactly, using rational
operations. We will devote most of cur attention
to the implicit members of this new class, We
recall from 4.1 that for a method to be of order
D, it is necessary that however the approximations
yE’”“‘” are derived from y{z,_,), the result at the
end of a step should agree with similar quantities
derived from wy(z,) to within O(APT!). If r =
g = p, as we will assume, then the relationship
between these quantities is necessarily of the form

B
U;En] - Za1ﬁjhjy(j)($ﬂ)+o(hp+l}? 1= 1: 2: s T

are zero except for their first rows, where

rooo0 00
160 -~ 00
f_lo 1o 00
000 -~ 10

It can be shown that the stability matrix for a
method with these properties is

M=~ 2V -z,

where Vs identical to V except for the first row.
This implies that the method has Runge-Kutta
stability.

It turns out to be possible to coustruct meth-
ods with these properties and they have excel-
lent prospects as stiff solvers. A related type of
method discovered by an Auckland research stu-
dent, Willlam Wright, has similar properties but
is explicit and is suitable for the solution of non-
stiff problems.
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=0

For methods with inherent Runge-Kutta stability,
the matrix of o coefficients has the simple form

1 p xg e Gy

G 1. Ras) R & S,
0 0 1 Cpn
o o0 o ... 1

Under these assumptions, V' is necessarily of the

I vy U13 VL p1

06 wvag V23 U2,p+1
v=| 0 va V33 V3,p+1

0 vpr12 Uprls Vpt 1 p1

and we will assume that the eigenvalues of this
matrix are {1,0,0,...,0} and, as the final re-
quirement for inherent Runge-Kutta stability that
the matrices

BA-~JB and BU-JV +VJ

Will Wright each of whom is working on numeri-
cal methods with inherent Runge-Kutta stability.
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